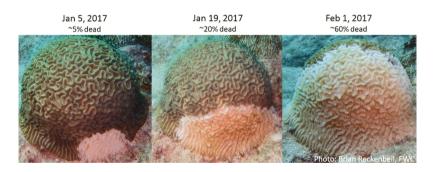
Machine Learning for Stony Coral Tissue Loss Disease (SCTLD)

Nonlinear Dimensionality Reduction, Barney-style

Advika Ravishankar Sam Brunacini Christian Bolinas

University of Pittsburgh, NOAA

What is SCTLD?



- Disease causing tissue loss (bad) in coral off the gulf coast
- Researchers suspect this disease is bacterial in origin
- Researchers (and us too!) are attempting to analyze which bacteria may have predictive power in identifying this disease

Your mission, should you choose to accept it...

Traditional modeling approaches haven't offered sufficient insight

- "differential abundance analysis"
- Whether some bacteria's presence offers statistically significant increase in SCTLD prevalence
- Like WAR in baseball, sort of

Our task: **investigate modern machine learning approaches** to see if they offer additional insight

• Basically: "Here's some data. Please make sense of it."

Your mission, should you choose to accept it...

Our data (mostly 0s) was an impenetrable blob from a bunch of studies. It looked like this:

	Sample 1	Sample 2	 Sample 2000
Bacteria 1	1	0	 0
Bacteria 2	0	0	 0
Bacteria 90,000	0	0	 1

Challenges

Real-world data is messy.

Our modeling approach: problems

Cluster analysis: group related data together, observe patterns

• i.e. find patterns of bacterial presence in SCTLD samples

Normally simple to do (common task, lots of libraries)

Issue: when data is high-dimension (number of columns) relative to number of points (rows), clustering algorithms **don't work**.

Running all different kinds of clustering algorithms, even after parameter tuning, didn't work

- Resulted in as many clusters as there were samples
- Says literally nothing about our data

Our modeling approach: solution

"Squish" the data into a lower-dimension space: "dimensionality reduction"

- i.e. get rid of "useless" columns
- Choosing a clustering algorithm is trivial in comparison
- With good data, everything works

Then do cluster analysis!

Our approach

General workflow was empirical in nature:

- Research dimensionality reduction, modeling technique
- Try dimensionality reduction technique
- Try modeling technique

Tried different combinations.

Dimensionality Reduction Approach: Principal Component Analysis

"Industry best practice"

Uninteresting

Well-studied in the literature

Uninteresting

Most importantly, is linear

- No reason to assume linear relationships a priori
- Misleading results when data (bacterial relationships that cause disease) has nonlinear relationships
- Ecology/ecosystem: things interact with each other!

Dimensionality Reduction Approach: Autoencoders

Neural network architecture

Learns the best way to

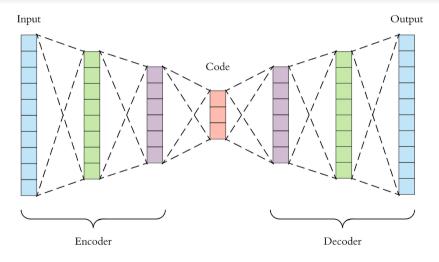
- Take high-dimension data
- Map it into low-dimension space

... while preserving important information

Neural network = nonlinear = **good**

"Best" mapping from high-dimension to low-dimension space = dimensionality reduction = what we want

Dimensionality Reduction Approach: Autoencoders



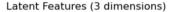
Dimension (height of block tower) "squished": only important blocks kept

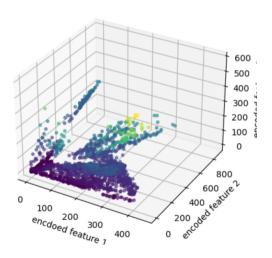
Dimensionality Reduction Approach: Variational Autoencoders

Autoencoder variation that learns probability distribution rather than specific function

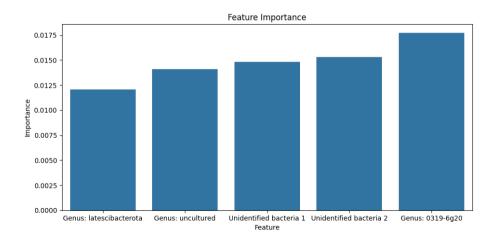
- More robust against noise
- Real data is noisy
- Good

Dimensionality Reduction Approach: Variational Autoencoders: Results





Dimensionality Reduction Approach: Variational Autoencoders: Results

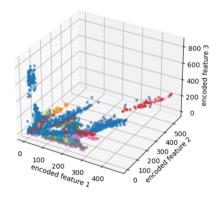


Clustering Approach: Overview

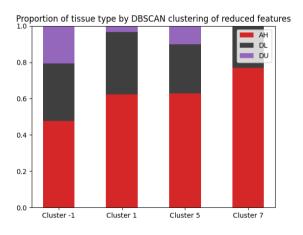
- Hierarchical, agglomerative algorithms
 - Fixed amount of clusters (clearly not known a priori...)
- K-means
 - Not robust against outliers (bad IRL)
 - Not robust against noise (bad IRL)
 - Fixed amount of clusters (clearly not known a priori...)
- DBSCAN
 - Robust against outliers and noise
 - Amount of clusters **not relevant a priori** to algorithm
 - Generally works really well!

Clustering Approach: DBSCAN: Results

Latent features clustered with DBSCAN (eps=10^-4)

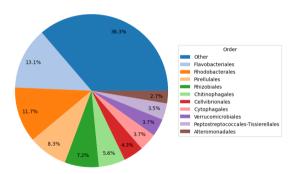


Clustering Approach: DBSCAN: Results



Overall...

Bacteria importance to latent representation by order



Analysis

Challenge: quantify model performance

Internal metric: silhouette score

- Compares how similar an object is to its own cluster compared to other clusters
- Works well with arbitrary cluster shapes/it's unbiased as to cluster shape
- Other metrics (e.g. Davies-Bouldin) biased (e.g. towards convex clusters)

HOWEVER...

Analysis

"Useful to stakeholders" > numbers

External metric:

- Qualitative cluster quality
- Interactive visualization ("fly around" 3D space to explore)

Tech Talk: Our tech stack

Tech Talk: Our tech stack

Standard Python ML ecosystem

- ML/DL libraries
- Notebooks: thought process, code, visualization, analysis in one place
- Rapid iteration

Tensorflow: making deep models

• SCI CRC JupyterHub for GPU compute

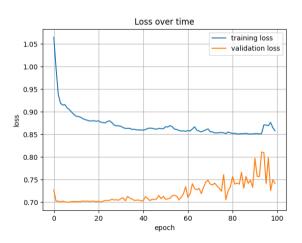
scikit-learn: clustering algorithms

Pandas: working with tabular data

Matplotlib: figures

Plotly: interactive visualization (clusters)

Tech Talk: Training VAEs: First Attempt



Tech Talk: Training VAEs: Sparsity

He Normal initialization

• Prevents vanishing gradients, dead neurons

ReLU -> Leaky ReLU

• Prevents neurons from inadvertently "dying"

Sigmoid final layer

Binary cross-entropy instead of MSE for loss

Tech Talk: Training VAEs: Overfitting

Model architecture

- More gradual dimension reduction
- Significantly more neurons
 - Learning was limited by insufficient number of parameters (model size)

Adaptive learning rate scheduler

Added dropout

Tech Talk: Training VAEs: Final Result

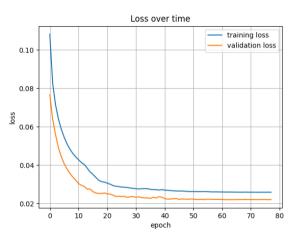


Figure 1: Note: Final loss ~ 0.02

Tech Talk: Training VAEs: First Attempt, Again For Comparison

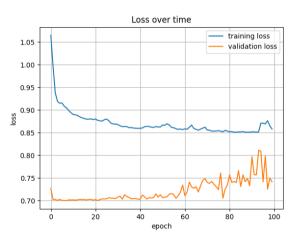


Figure 2: Initial loss was ~0.75! Improvement by orders of magnitude!

Going Forward: Dimensionality Reduction

Still nonlinear dimensionality reduction

Still benchmarking vs. VAEs

- (Other) (such as sparse) autoencoders
 - denoising autoencoder
 - concrete autoencoder
- Kernel PCA (like SVM)

Going Forward: Clustering

UMAP + Mapper combo

• Empirically pretty good for high-dimensional, sparse data in this domain

HDBSCAN

• Better than DBSCAN for varying densities

Going Forward: Other

Use clusters as base for binary classifier with predictive power

Basically, is this similar to any well-defined groupings of SCTLD tissue samples?

classifier :: [bacteria] -> bool

